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7,234 Baker-Nunn camera observations of five satellites were analyzed
to determine simultaneously 44 tesseral harmonic coefficients of the gravi-
tational field, 36 station coordinates and 511 orbital elements. Supnle-
mentary observational data incorporated in the solution included accelera-
tions of 24-hour satellites and directions between tracking stations from
simultaneous observations; observation equations were also written for the
differences between geometrical and gravitational geoid heights at tracking
stations. Several variations in relative weighting of different obser-
vational data and a priori variances of parameters were tested. The previous
independent solution most closely approached was that by Anderle based on
Doppler data, from which the rms discrepancy was * 0.18 x 10°% for 38

normalized harmonic coefficients, or + 7 meters in total geoid height. An

ugtorial radius of 6 378 153 + 8 m. was obtained. N
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Introduction. The analyses described in this paper are a continuation

of those reported three years ago [Kaula, 1963a, b]. They are an appreciable

improvement over the previous analyses not only in using observations of a
better variety of more recent orbits, but also in better methods of analysis
and in using supplemental data. This investigation is one of four principal
efforts in the determination of tesseral harmonics of the gravitational
field. The complexity of such investigations makes it desirable that there
be independent efforts which differ not only in the tracking data but also

in the techniques of analysis applied.

Changes from previous solutions. The dynamical theory applied,

formation of partial derivatives, use of observational and timing variances,

formation of observational equations, and accumulation of normal equations
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1966a]. The most significant improvement is in the data, Baker-Nunn

camera observations of the Smithsonian Astrophysical Observatory. The
satellites used are somewhat better distributed in inclination, and, all
being later than 1962 March 7, are appreciably less affected by drag than
those used in the earlier analyses. The satellite data is summarized in
Table 1. 1In determmining the preliminary orbits, arcs were rejected for the
final analysis not only if the number of observations were insufficient but
also if excessive iterations were required to obtain a satisfactory fit.
The greatest deficiency of camera tracking using solar illumination appears
to be an inability to obtain a good distribution of observations of
satellites which are low enough tc be sensitive to the v
gravitational field (perigee below 1200 km) and are of inclination
appreciably higher than the latitudes of the tracking stations (less than
37°). Thus the most sensitive satellite used in this study, 1961 o 1,

is the poorest observed, while the best observed, 1961 ¢ 8§ 1, is so high

as to be useless to determine gravitational harmonics above the Uth degree.

To enable solution for a maximum number of tesseral harmonics, the
central term GM was held fixed at 3.986009 x 10* m®/sec®, the mean of
values determined from Ranger lunar probes [gjogren & Trask, 1965], and the

zonal harmonics J; through J, were held fixed at the values [Kozai, 1964 ;

King-Hele et al, 1965a,b] given in Table 2, Perturbations due to these




zonal harmonics, as well as luni-solar perturbations of more than 10°®
amplitude, were calculated in both preliminary and final orbit analyses.
Arbitrary polynomials were limited to a t? term in the mean anomaly, making
seven orbital constants for each arc. |

To enable,solution, in effect, for an indefinite number of orbital
constants simultanebusly with tesseral harmonic coefficients and corrections
to station coordinates, the technique of partitioned normals was used;

i.e., writing the normal equations as [Kaula, 1966a, sec. 5.3]:
%LLEm {.&1_} = {.&1_} (1)
1 Naa L2 3

where N is the matrix of normal equation coefficients, z is the vector of
corrections of parameters, and g, is the vector of normal equation constants,

then a solution of z. alone can he written as:
) -1 -1 -1
Z, = [Jtln - Nia Naa .blax] [51 - N Nz éa] (2)

If g comprises corrections to orbital constants, which are peculiar-to

each arc, then the non-zero elements in the matrix N,g will be in a series
of square blocks down the main diagonal, one block per arc. Hence the
inversion N33 and the subtractions of Nyg Nsa Nay and Ny Naz s in
equation (2) can‘bé made separately for each arc one at a time. Therefore
at any time there need be stored in the computer only those parts of the
normal equations pertaining to the pérameters common to all arcs -- the
corrections g, to tesseral harmonic coefficients and stations coordinates --
plus the parts peculiar to the one arc being analysed. This technique is
also used by Anderle [1966]‘and Guier & Newton [1965] in analyzing Transit
Doppler tracking data; it is probably the principal difference of this paper

in method from the iterative technique used by Izsak [1966] and Gaposhkin
[1966] in analyzing the Baker-Nunn camera tracking data.

The principal inaccuracies in the calculations, aside from neglect of
drag, are believed to be the absence of short period J5 terms in the
orbital theory of Brouwer [1959] and the failure to correct station
positions to a common epoch for latitude variation [ygig, 1960, pp 97—98].

Both of these defects are on the order of + 10 meters or less in effect.
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fﬁ Hence, the parameters to be determined were selected as being of greater
: expected effect. Experience indicates that tracking stations as far apart
as the Baker-Nunn cameras should, to this level of accuracy, be considered
as moving separately. Hence 36 of the unknowns ianI are corrections to
station coordinates. To select the tesseral harmonic coefficients to be
| determined in addition to the low degree terms up to degree and order {,m
i | of 4,4 and the small divisor terms for which m is approximately equal to
| the number of revolutions per day and 4 is odd, a calculation of orbital
perturbations was carried under the assumption that the normalized

i coefficients Eim’ gbm are + 8 x 10-8/4*® in magnitude, a rule-of-thumb which

appears quite good up to about degree 15 [Kaula, 1966b]. The results of
this calculation appear in Table 3. 22 coefficients of degrees 5 through 8
were thus selected.

The small divisor, or near resonant, harmonics rAnderle_ 1968
Yionoulis, 1965] under the + 8 x 10" /42 assumption were significant for

1960 ¢ 2 (12th order), 1961 o 1 (l4th order), and 1962 Bu 1 (13th order)
but not for 1959 o 1 or 1961 ¢ 8§ 1. The particular degrees selected for
solution were those which happened to have the largest partial derivatives.
The procedure for evaluating these partial derivatives is exactly the same
as for the lower degree harmonics, with the important precaution that the
rate for a perturbation of the mean anomaly through the perturbation of the
semi-major axis is not assumed to be an integer multiple of the mean

motion: i.e., for a disturbing function term

R, =E(f£\

1
F (1) G
4mpg .a\a/ “4mp ‘77 Tipq

3 (e) Smpq \Wy iy a, 6) (3)
the indirect perturbation of the mean anomaly is:
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where the overbar indicates integration of the sinusoidal function with

respect to its argument. [Kaula, 1966a, Sec. 3.5].

To strengthen the solution, two types of supplemental data were
included: the accelerations of 24-hour synchronous satellites and the

mutual directions of tracking stations obtained from simultaneous satellite




observations.

The acceleration in longitude of a 24-hour satellite appears in an

observation equation of the form

z QLm [ELm sin m)x - §m cos mk] = "X.o + 6‘{0 (5)
(4-m) even

where
L 2 At
= [(Am)! (24+1)1° | 2 ["e
QLm [ (4-m) ! 3n"m a Fme (1) GLpo (e, (6)
p = (4-m)/2
LKaula, 1966a, Sec. 3.6J. The observed accelerations"):o (corrected for &\_

luni-solar perturbations) and their standard deviations c(KB) were taken
from the work of Wagner [1966]. Five accelerations of 1963 - 3)lA at a
variety of longitudes and one acceleration each of 1964 - 47A and 1965 - 28A

were used, as summarized in Table .

The direction of one tracking station from another as obtained by
simultaneous observations of satellites appears in an observation equation
of the form

{8ég}ﬁwﬂ-‘ij+‘*ij‘(-ii‘“A‘«ii)MEg"%‘ =8 (7

whereﬂgmu is the rotation matrix from coordinates referred to the earth's

pole and Greenwich meridian to coordinates with the l-axis along the line
from station i to station j and the 2-axis along the major axis of the

error ellipse of the observed direction:
Ry =B (0) Bs (-0) Rs (M) (8)

In equation (7), o and ) constitute the observed direction of station j
from station i in the form of latitude and longitude, and p is the angle
between the normal to the meridian plane defined by A\ and the major axis

of the error ellipse.



The directions between l4 pairs of Baker-Nunn camera stations derived
by Aardom et al [1965] from 615 pairs of quasi-simultaneous observations of
satellites of about 3700 km altitude are given in the form of direction
cosines ¢ with respect to polar-Greenwich axes of station j from station i.
1 The standard deviations are given in the form of the semi-major and semi-
| minor axes a, b of the error ellipse and the angle ¢ between the major axis
| and the normal to the plane defined by the stations and the earth's center.

To apply these observations in equations (6), (7) we have:

- sine cos A (9)
Mm =4~ sing sin A
cos ©
V= sin 1
k]
cos A

p = tan™! (g-p/nek) + 6 - ™2

The major semi-axis of the error ellipse was always within 18° of the
station-center plane. The number of observation pairs used for each
position line varied from 5 to 90; the standard ellipse major semi-axis,
from + 2.3 to + 10.5 x 10°®; the minor semi-axis, from + 0.9 to * 3.9 x 10°®.
The stations appearing in these 14 equations are noted in the last column
of Table 7.

In addition, we can write as an observation eguation the fact that the
geometrical geoid height derived from the position of a tracking station
should differ from the gravitational geoid height calculated for the same

of
GR
variations in the gravitational field of higher degree than those represented

point from the harmonic coefficients only by the contribution &N

by the coefficients:



{1 0 0}*50n M - a, 2: ?im (sin o) [Eim cos mk+§£m sin m)\:];=
4,m

8N - N
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where_Bzu is defined by equation (8) (the rotation about the 1 axis being
of no effect) using the position ¢,\ of the station, Fim is the normalized

associated Legendre function, and N is the geometrically calculated

geoid height, obtained from stationGgositionﬂg, the station height above
sea level h, and the reference ellipsoid of semi-major axis 6378165 m. and
flattening of 1/298.25, corresponding to the J; in Table 1. Also applied
as a fixed correction are the contributions of the fixed zonal harmonics to
the gravitational geoid height. Since the semi-major axis a, is used to

calculate the geometrical geoid height N in equation (10), the mean

radial shift of the tracking stations cange considered as a correction to
the semi-major axis. The standard deviation of the "observation" 5NGR
in equation (10) was estimated to be * 20 meters as follows. The 49
coefficients fixed or being determined on the + 8 x 108 /42 rule con-
tribute a mean square of (26 m)® to the geoid height, which was subtracted
from the (33 m)® mean square estimated from autocovariance analysis of
gravimetry [Mal 1959, p. 2418].

In combining widely differing types of data, the relative weighting
is necessarily somewhat arbitrary, particularly when the observational
variances are derived in different ways. For the satellite observations,
variances based on observational residuals of previous analyses were used:
(12.0")® direction and (O.OSOS)a time [Eiﬂli’ 1963b, p. 5184]. For the
24-hour satellite accelerations and the directions between stations, the
variances produced by the least-squares analyses of Wagner [1966] and

Aardom et al [1965], respectively, were used.

Furthermore, when one type of data is represented by many more obser-

vations than another, as was the case for the close satellite data (14,468

equations) compared to the supplemental data (47 equations), then the neglect

of covariances in the former will be much more significant, and the use of
the correct variances in simple least squares will result in an over-

weighting of the more numerous relative to the less numerous.




For the foregoing considerations the computer program was modified so
that when the normal equations for a particular satellite had been generated,
they were saved on tape to be read off and multiplied by the weighting
factor before being added to the combined normal equations. In this manner,
additional solutions with different combinations of weights could be made
with less than one minute computer time each. A further capability which
was included for these short-time additional solutions was change in pre-

assigned variances and starting values for the parameters.

Some of the data weighting and pre-assigned standard deviations of
parameters tried are given in Table 5. The varied satellite weights and
the supplemental equation weights in excess of 100 were calculated on the
basis of making each satellite and each block of supplemental data of equal
weight. However, since the satellite variances are probably too large and
the supplemental variances probably too small, the smaller weights for the
supplemental data are probably more realistic. 1In any case, over a quite
wide range of weights the influence in the solution will appear for any
data which differs significantly from the bulk of the data in its sensitivity

to certain parameters.

As discussed by Kaula [lQGBb], solutions for a set of station coordinates
from close satellite tracking are subject to systematic error in orientation.
In the iterative solutions from camera data by Izsak [1966], Veis [1965], and
Gaposhkin [1966], the overall orientation is essentially fixed by correcting
orbital longitudes and station longitudes at alternate stages.' In the
solutions from Doppler data by Anderle [1966] and Guier & Newton L1965J, one

station is held fixed to establish a longitude reference. In the analyses

described in this paper, several solutions (A through E, L and N in Table 5)
were made in which all stations were left free to move, in the hope that
adequate orientation would be obtained from the inertially referred directions
constituted by the camera observations. The opposite alternative of fixing
one station in one or more coordinates was also tried (solutions O, P, and Q).
However, there is no reason to give preference to one station over another.
Hence it seems better to treat all stations equally and to allow some
influence to the camera directions by preassigning variances to all station

positions (solutions F through K and M).




Missing from Table 5 are some obvious alternatives, such as: omitting
or giving higher weight to the 24-hour satellite data; restraining the
Sth-8th Degree gravitational coefficients completely; including or omitting
mutual direction and geoid height equations separately; étc. Most of these
alternatives were tested at an earlier stage, with a set of close satellite
data differing in some respects from that used in the final analysis. In
these tests the variations in the weighting of the 2u-hour satellites had a
considerable effect: their omission resulted in a wider scatter of results
for the coefficients E;,,'ﬁp as well as some others, while weighting them
heavily distorted E;l, 5;1 from the values strongly indicated by the close
satellite data. Variations in the weights of the geometrical data and
restraining the higher gravitational coefficients appeared to have little
effect on the solution for the low degree coefficients. Also tested was
omission of each close satellite, one at a time, in a solution for the low
degree gravitational coefficients. As anticipated, omission of 1961g41,
the least sensitive satellite, had least effect, while omission of 196lol
had greatest effect.

Results.

The principal test of the value of different solutions was intended to
be the chi-square test: if the original estimates of weights, variances
and covariances are good (and if the formulation of the problem is correct),
then the corrected gquadratic sum should be close to the degrees of freedom.
In other words, the gquantity '

q = ‘f,l E:-L i‘ _ng _S‘:_J/(H—P) (ll)

should be close to unity, where f is the vector of observation equation
constants;~ﬂg;s the weighted covariance matrix; n is the number of obser-
vations; p is the number of parameters; and gz and s are the solution and
normal equation constant vectors, as in equation (1). The g's obtained
varied from 1.18 (solution B) to 1.54 (solution E). However, much of this
variation is due to fhe weights which are incorporated in the sums in the
numerator, but not in the denominator, of equation (). If the number of

observations n is changed from S‘ni to y‘wini, where w, is the weight of
ek ® L s R
i i

data type i, then the q's vary from 1.0l (solution E) to 1.33 (solution F),
with A, D, F thru K, and M thru Q all between 1.25 and 1.33. Of those




which are distinctly lower, B, C, and L all fail to utilize the mutual
direction and geoid height data. On the other hand, E over-utilizes this
data: i.e., some of the geometrical geoid heights resulting from solution E
agree with the gravitational geoid heights'within a meter, which is not
possible without distorting the lower degree gravitational coefficients by
forcing them to absorb a lot of the higher degree contributions to the
station geoid heights.

Hence the choice of preferred solution must be based on more selective
indicators of the essential quality of sensitivity of data to parameters
determined. The most obvious weakness is that of overall orientation:
when all 36 station coordinates are free to shift, erratic results are
obtained, as shown by Solutions A and N in Table 7. Some constraint must
be applied, as it has been in all previous analyses of close satellite
tracking. Such constraint necessarily amounts to allowing some influence
to previous solutions. The station positions obtained by the iterative
satellite orbit analysis of Izsak [1966] and Gaposhkin [1966] now seem
superior to starting values based on terrestrial data, as used by Kaula
[1963a3b]: certainly so for stations not connected to continental datums.
The next choice is between expressing this influence by fixing one station
(Solutions O, P, Q) or by assigning a priori variances to all station
positions (Solutions F thru K and M). As previously discussed, the latter
seems preferable on general grounds; the results in Tables 6 and 7 do not
appear to markedly contradict this preference.

The two solutions which assigned a priori variances to gravitational
coefficients, K and M, differed negligibly in their results from solutions
J and G, respectively, the maximum changes being decreases in absolute
magnitude of .09 to .11x10"® in two or three 5th and 6th degree coefficients.
Of the remaining solutions F thru J, F, I, and J are preferable to G and H
because they incorporate the supplemental data, while H, I, and J are
preferable to F and G because they give relatively greater weight to the
sensitive lower satellites 196lol and 19594l than to the insensitive high
satellite 1961lqél. The two preferred solutions I and J differ in the
weight assigned to the supplemental equations, the effect of which shows
most markedly in the sectorial harmonic coefficients Cag , '(-:'“ , and S, .
For these three coefficients solution J is much closer than I to the
independent results based on Doppler data of Anderle [1966] and Guier &
Newton [1965]. Perhaps the differences are a reflection of the variances

adopted for the direction data being too small relative to those for the
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close satellite data, We adopt solution J, but the preference is mild.

Eight solutions for gravitational coefficients through the 8th degree
are given in Table 6, which suffices to demonstrate the more important
effects of variations in weighting. The standard deviations Tim resulting
from the least squares calculation are also given for solution J; the one
figure given pertains to both Eim and §£m, since their standard deviations
always agreed within .01x10"®. The highest correlations between different
harmonics producéd by the least squares occurred in the expected places;
i.e., (1) between coefficients both appearing in the 2u4-hour satellite
equations, for example -0.754 for r(Csp , E},); -0.321 for r (C4, §;,);
-0.311 for r (S, Cg ); and 0.240 for r (Sss ., C,2); and (2) between
coefficients of the same order m and degree 4 differing by an even number,
for example -0.534 for r (C.,, Cay); 0.692 for r (C,,, Cgy); 0.u80 for
r (E;z, E;a); 0.446 for r (Ea4, 5;4); etc. All correlation coefficients
not in these two categories were less than 0.18, most of them less than
0.08. Most correlations between gravitational coefficients and station
coordinates were less than 0.05, the largest being 0.152 for r (E;‘, Ug ,3)
and -0.143 for r (E;l, Uy 538 ) -

The solutions for the 15th degree coefficients are not shown in Table 6

because they always came out the same:

Tyssgg = -0.043 (+.002) x 1078, Sy5,,5 = -0.031 (+.002) x 107®

Cysa19 = -0.032 (+.007) x 10°®, S,g,,5 = -0.065 (+.007) x 1078

Cys 53¢ = 0.010 (+.003) x 107®, Sy 514

-0.011 (+.003) x 1078

The geoid corresponding to solution J (plus Table 2) is shown in
Figure 1. For 38 tesseral harmonic coefficients in common with the solution
of Anderle [1966],4the quadratic sum of differences in the coefficients was
1.29 x 107**, equivalent to + 7.3 meters in geoid height, or an rms
discrepancy of + 0.18 x 108 per coefficient. For other solutions, the
comparable figures are: Guier & Newtof [1965 : 38 coefficients,
1.91 x 10'13, +8.8m., +0.22 x 10°8; IzsaR | 1966 | 32 coefficients,
1.94 x 107*®*, + 8.9 m., + 0.25 x 10"®; and Gaposhkin [1966 : U0 coefficients,
1.00 x 107*, + 6.4 m., + 0.16 x 10°®,

The results for station coordinate shifts are given in Table 7,

together with the standard deviations for the preferred solution J. The
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. ill:conditioning and orientation problems occuring when the stations are
allowed to move freely are evident from the results for solutions A and N:
for formal standard deviations for station coordinates generated by the
least squares solutions were about + 11 meters, but the rms difference
between solutions A and N is + 25 meters. Covariance between different
stations also appears to be high; for example, the solution N A, .42 has 16
correlation coefficients which are higher than 0.20. The fluctuations of
station positions between different solutions in Table 7 is considerably
more than that implied by the fluctuations of gravitational coefficients in
Table 6. Multiplying the range of variation of a coefficient (e.g.,
0.10 x 107® for E;J in Table 6 by the average partial derivative of satéllite
position with respect to the coefficient yields a range of about 6 meters
in orbital position. From thié, we would expect a range of about ViZ x 6,
or 20 meters, in station position, since a station coordinate appears in
1/12 as many equations. This is about equal to the absolute average dis-
crepancy between coordinates for solutions O and J, which utilize the two
alternative methods of fixing orientation. It is also about equal to the
rms deviation of the coordinate shifts (not including Au,,,g) of solution J,
*+ 22 m., from the iterated solution of Gaposhkin [1966]. For the one out-
standing shift of + 127 meters for u,,,3 , no special explanation has been
found. Rotating to local coordinates, the shift of station 12 for solution J
is - 99 m. in radius, + 41 m. in prime vertical, and + 83 m. in latitude.
Solution I, which gives heavier weight to the mutual direction and geoid
height equations, reduces the radial shift to - 35 m., but increases the
northeastward shift by about 30 meters.

Geometrical geoid heights with respect to an ellipsoid of equatorial
radius 6378165 meters and flattening 1/298.25 were calculated from the
final positions for solution J. These geoid heights together with gravi-
tational geoid heights obtained from Figure 1 are given in Table 8. 1If the
mean value of a geometrical minus gravitational geoid height is taken as a
correction to the semi-major axis, a value of 6378153 + 8 m. is obtained.
Using this radius with the GM of 3.986009 x 10** m®/sec® gives an equatorial
gravity Yo of 978.0284 cm sec™®, which is in better accord with terrestrial

solutions than previously obtained [Kaula, l966b].

Conclusions. This investigation demonstrates that a good solution for

the non-zonal harmonics of the gravitational field can be obtained from a
relatively small amount of data. The agreement of the gravitational

coefficients with other solutions using different data or methods of analysis
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is also quite satisfying, indicating that the amplitudes of persistent
oscillations in the orbits are belng determined within about + 5 meters.
The results' for station eoordlnate shifts are not so satisfactory: the
limitations on directions with respect to inertial space in which obser-
vations can be made for a given orbital arc of 18 days or so apparently
results in poor separation of station coordinates from orbital parameters.
Some constraint in orientation is needed for the entire system, as well as
probably a considerably larger amount of data to gain an improvement over

the accuracy of + 20 meters obtained in this study.
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TABLE 1 Close Satellite Orbit Specifications

13

Satellite 195941 196022 19610l 1961g81 19628ul
Name VANGUARD 2 ECHO 1 ROCKET  TRANSIT YA MIDAS 4 ANNA 1B
Epoch 1963Jan27.0 1963Janl0.0 1962May21.0 1962Aug.18.0 1963Jan9.0
Semimajor Axis 1.301994 1.250052 1.146988 1.568120 1.177254
Eccentricity 0.16417 0.01139 0.00799 0.01209 0.00707
Inclination 0.57383 0.82437 1.16620 1.67302 0.87514
Argument of Perigee 3.13491 1.93573 1.18658 1.67305 0.94214
Longitude of Node 2.87158 0.79776 0.u46898 6.27650 2.84671
Mean Anomaly 1.76589 5.92654% 3.927u8 0.67818 0.80524
Min. Acceleration* -0.51x10"° -1.00x10°° +0.02x10"®  -0.25x10°® -0.44x10"®
Max. Acceleration¥ +7.01x107*® +1.35x107® +0.90x10"%  +0.41x10° +0.27x10°
Perigee motion/Day +0.09238 +0.05200 -0.01210 -0.01708 +0.04364
Node motion/Day -0.06141 -0.05415 -0.01438 +0.00367 -0.04119
Periods/Day 11.48 12.20 13.86 8.68 13.35
Max. A/m, om®/g 0.21 0.27 0.12 0.08 0.07
Min. A/m, om®/g 0.21 0.08 0.11 0.02 0.07
Perigee Height, km 560 1500 880 3500 1080
Starting Date 1963Jan.18 1963Jan.1l 1962Mayl?2 1962Aug.3 1962Dec.31
Ending Date 1963Nov.20 1963Sep.28 1963Jul.24 19630ct.27 1963Nov.2
Number of Arcs 13 15 15 15 15
Days/Arc 18 18 18 30 18

Min. Obs./Arc 42 67 32 61 61

Total Observations 790 1628 612 2882 1322

SAO Spec. Rep. Nos. 185 185 148,185 147,185 168

*Units for acceleration:

dn/dt in radians/(806.8 secs.)® where n is mean motion



TABLE 2 Fixed Zonal Harmonics

2 Jy Cro
106 10°¢
2 1082.70 -484.,198
3 -2.55 0.965
4 -1.50 0.500
5 -0.15 0.0u5
6 0.50 -0.140
7 -0.37 0.090
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TABLE 3 Amplitude of Perturbations of Close Satellite Orbits
by 5th and Higher Degree Harmonics 4m of Normalized
Magnitude iSXlO“S/La'(excluding zonal and near-resonant harmonics).

. More than 10 to 20 5 to 10
Satellite a € I 20 Meters Meters Meters
195941 1.302 .16 32.9° 51,52,61,62, 53,72,83, 54,64,73,74,82,84,92,
63,71,81. 101,111. 93,102,104,122,141.
19602 1.250 .01 u47.2° 51,61. 52,63,64, 53,54,62,65,71,72,81,
82,101. 85.
19610l 1.147 .01 66.8° 51,61,62,63, 52,53,54, 71,73,74,75,76,86,87,
65. 55,64,66, 91,92,102,103,111.
72,81,
84,101,121,
1961481 1.568 .01 95.9° 61,62.
19628ul 1.77 .01 50.1° 51,52,61,63, 53,62,65, 54,55,72,73,74,75,83,
ol . 71,81,82, 85,86,92,102,111,121

101.




TABLE 4 24-Hour Satellite Orbits
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Satellite

1963-31A 1964-47A  1965-28A
Name SYNCOM II SYNCOM III EARLY BIRD
Inclination 33° 0.1° 0.2°
Start Longitude 305.1° 2uy.7° 174.0° 118.0° 81.0° 179.2° 330.7°
End Longitude 302.4° 197.5% 161.5° 102.2° 52.0° 178.2° 330.7°
Observed Acceleration x10° -1.962 1.888 0.435 -2.203 0.849 1.476 -1.291
428 +74 +uy iy 454 +62 +9
Amplitude Qs 7775 L9104y
Factors Qsy -.0155 -.0582
of Qs3 .17524x10"3 .2253\x10"2
Partial Q2 .0008 -.0182
Derivatives \ Q. .03u4 . 0482

Accelerations and Partial Derivatives in radians/(planetary time unit)a, where

planetary time unit = 806.8137 secs.
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TABLE 5 Data Weights and A Priori Standard Deviations of Parameters

Parameter A Priori
Data Weights Standard Deviations
Solutio Close ci-Hour  Mutual Directions Station Gravity Coefficients

Satellites' Satellites & Geoid Heights® | Positions® Com §m
m. 10-®
A 1 1 1 o ©
B 1 1 0 ™ ®
c Varied 1 0 © ©
D Varied 21.2 Moderate o ©
E Varied 21.2 High © ®
F 1 1 1 10. ©
G 1 1 0 10. ®
H Varied 1 0 10. ©
I Varied 21.2 Moderate 10. bad
J Varied 1 1 10. o

K Varied 1 1 10. Deg 2-4:m; 5-8:8/4
L Varied 1 0 ® Deg 2-4:o; 5-8:8/42

M 1 1 0 10. All 8/43
N Varied 1 1 o *®
0 Varied 1 1 a @
P Varied 1 1 ®
Q Varied 1 1 c ®

NOTES: !: varied satellite weighting: 19591, 2.05; 1960.2, 1.00; 196lo0l, 2.70;
1961q81, 0.55; 19628ul, 1.20.

Moderate weighting: Directions 10.5, Heights 16.4;
High weighting: Directions 110., Heights 270.

Station weighting a-c: all stations o, except a: Station 1 fixed
in all coordinates; b: Station 1 fixed in longitude and radius;

c: Station 1 fixed in longitude only.
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TABLE 7 Station Positions
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No.

Name Starting Shifts for Solution In
(number of Coordinates A F H I N 0 Q J c Direction eq.
observations) m m m m m m m m m m with Sta. No.
1. Organ u,; -1 535 753 -92 -53 -38 -27 -108 0 +19 -ul +6 7,9,10,12
Pass ugz -5 167 000 +119 +16 +20 +11 +98 0 +64 +14 5
(926) ug 3 401 047 +208 +19 +47 +21 +181 0 +lu4 +27 5
2. Olifants- 5 056 133 -38 +10 +19 +18 +1 +24 -17 +19 6 8,9,10
fontein 2 716 489 -73 -24 -40 -32 -105 -68 -50 -36 7
(664) -2.775 832 -66  +4 -3 +5 -u45 -14 -36 -1 7
3. Woomera -3 983 738 +61 +10 -11 -9 -38 +18 +15 +6 7
(719) 3 743 127 -119 -39 -44 -40 -85 -61 -121 -43 &
-3 275 615 -50 +3 +8 +9 . -27 +8 -16 +10 6
4. San 5 105 610 -108 -15 -28 -6 -94 -y8 -85 -15 5§ 8,9,10
Fernando -0 555 226 -55 '.22 -31 +3 -64 -36 -13 -23 7
(790) 3 769 693 +210 +31 +59 +26 +193 +73 +175 +u40 5
5. Tokyo -3 946 697 +143 +18 423 +29 +140 +65 +B9 +22 7 6
(339) 3 366 293 44 -1 -1 -19 -30 -17 -70 -4 7
3 698 858 +214 +16 +13 +22 +174 +56 +152 +1lu4 7
6. Naini 1 018 206 +34 +17 +29 +7 +52 +26 -2 419 7 5,8
Tal S 471 103 -111 -y -3 -1 -97 +25 -69 -4 5
(678) 3 109 620 +2u5 432 +21 +44 4217 +88 +193 +36 5
7. Are- 1 942 768 +3 +6 49 +5 -29 -15 +36 +1 5 1,9,10,11
quipa -5 804 089 +64 -1 43 -5 +41 -5 +40 +3 5
(518) -1 796 968 +67 48 +4  +33 455 +43 +94 +11 7
8. Shiraz 3 376 887 -30 +8 +18 -10 -15 -1 -u7 +6 6 2,4,6
(564) 4 403 994 -120 -21 -39 -10 -105 -u45 -80 -22 6
3 136 264 +235 +27 +36 +33 +207 +80 +186 +33
9. Curacao 2 251 822 +6 +10 -6 +9 -26 -15 +35 +5 5 1,2,4,7,10,
(484) -5 816 923 +87 +8 -22 +11 +63 +6 +60 +6 5 11
1 327 171 +168 +3 -3 +11 152 +17 +159 +10 5
10. Jupiter 0 976 281. -82 -10 -57 -3 -64 -31 +3 -13 5 1,2,4,7,9
(567) -5 601 390 +91 +2 +4 -1 +71 -1 +60 +1 5
2 880 2u7 +225 +33 +32 +35 +198 +34 +190 +39 5
11. Villa 2 280 572 +7 +1 -23 +8 -23 -22 +29 +6 5 7,9
Dolores -4 914 580 +131 +22 +20 +6 +89 +33 +98 +16 6
(552) -3 355 uyeu -46 +1  +4 +26 -27 +4 -1l +8 6
12. Maui u, -5 466 063 +2u5 +101 +138 +84 +236 +212 +261 +127 6 1
(623) u; -2 4oy 286 +36 +4 +28 -35 +60 +3 +11 +12 6
ug 2 242 180 +251 440 +38 +65 +203 +61 +194 +U3 +6




TABLE 8 Comparison of Geoid Heights (Solution J)
Referred to an ellipsoid a, = 6378 165 m., f = 1/298.25

Station Latitude Longitude Elevation Geoid Height
Number East above MSL Geometrical Gravitational
Deg. Deg. m m m
1 32.4 253 .4 1651 -32 -23
2 -26.0 28.2 1544 21 27
3 +31.1 136.8 162 -28 1
4 36.5 353.8 24 60 52
5 35.7 139.5 58 22 20
6 29.4 79.5 1927 -59 -52
7 -16.5 288,5 2451 25 Y
8 29.6 52,5 1596 =27 -13
9 12.1 291.2 7 -43 -20
10 27.0 279,9 15 -4l -27
11 -31.9 294.9 598 25 10

12 20.7 203.7 3035 -101 -17
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